skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pranathi Vasireddy, Krishna Kavi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sparse matrix-dense vector (SpMV) multiplication is inherent in most scientific, neural networks and machine learning algorithms. To efficiently exploit sparsity of data in the SpMV computations, several compressed data representations have been used. However, the compressed data representations of sparse date can result in overheads for locating nonzero values, requiring indirect memory accesses and increased instruction count and memory access delays. We call these translations of compressed representations as metadata processing. We propose a memory-side accelerator for metadata (or indexing) computations and supplying only the required nonzero values to the processor, additionally permitting an overlap of indexing with core computations on nonzero elements. In this contribution, we target our accelerator for low-end microcontrollers with very limited memory and processing capabilities. In this paper we will explore two dedicated ASIC designs of the proposed accelerator that handles the indexed memory accesses for compressed sparse row (CSR) format working alongside a simple RISC-like programmable core. One version of the the accelerator supplies only vector values corresponding to nonzero matrix values and the second version supplies both nonzero matrix and matching vector values for SpMV computations. Our experiments show speedups ranging between 1.3 and 2.1 times for SpMV for different levels of sparsities. Our accelerator also results in energy savings ranging between 15.8% and 52.7% over different matrix sizes, when compared to the baseline system with primary RISC-V core performing all computations. We use smaller synthetic matrices with different sparsities and larger real-world matrices with higher sparsities (below 1% non-zeros) in our experimental evaluations. 
    more » « less